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COMMENT 

Universal f(a) spectrum as an eigenvalue 

Z Kovacs 
Institute for Theoretical Physics, Eotvos University, Puskin U 5-7 ,  H-1088 Budapest, 
Hungary 

Received 8 August 1989 

Abstract. It is shown that the multifractal spectrum f (  a )  of the Feigenbaum attractor with 
respect to its natural measure can be computed from the largest eigenvalue of a generalised 
Frobenius-Perron operator. This method is easy to implement and provides very high 
accuracy. 

In the spirit of the thermodynamic formalism [l] ,  it has recently been shown [2-71 
that scaling properties of dynamical systems can be studied via eigenvalues of certain 
Frobenius-Perron-type operators. For one-dimensional unimodal maps x’ = f ( x )  this 
eigenvalue problem can be written as a generalised Frobenius-Perron equation [3 ,4 ,7]  

Here P is a real parameter ( --CC < P <E), f ’  and f - ’  stand for the derivative and the 
inverse off, respectively; The right-hand side of (1) defines the generalised Frobenius- 
Perron (CFP)  operator P ( P ) ,  A(P) is an eigenvalue and  Q ‘ P ’ ( x )  is the corresponding 
eigenfunction. In this comment, based on recent work [ 6 , 8 , 9 ] ,  we show that this 
equation provides a convenient way to calculate the multifractal spectrum [ 101 of the 
Feigenbaum attractor [ l l] ,  which is of great importance due to its universality in the 
space of I D  maps with quadratic maximum. 

Eigenvalues showing up  in an iterative solution of (1) are of sp5cial interest. Starting 
from an  initial function QO(x), the iteration scheme Q,,+, = A - ‘ P ( P ) Q , ,  converges for 
n+co to a non-trivial limit Q”’(x) only if A is a particular eigenvalue A(P) [3]. The 
largest and most relevant of these eigenvalues A,(P) = exp( -PF(P) )  can be obtained 
[3] by using any smooth initial function Qo. In [4,7] it was shown that 

( 2 )  -In & ( P I =  P F ( P )  = G ( P )  

where G ( P )  is defined by the relation 
, I ,  I 

, = I  A!-exp(-G(P)n) ( 3 )  

for n + 00. The length scales, A ,  = x?, - x?,- ,  , appearing in the sum are obtained from 
the nth pre-images x, ( j  = 1 , 2 , 3 , .  . . , 2 ” )  of some seed point x*,  ordered along the x 
axis. 

The function P F ( P  ), called free energy in the thermodynamic formalism, describes 
purely geometric properties, namely the length scale distribution of the intervals A, .  
However, it can contain information on the metric properties as well if the measure 
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sitting on the intervals has a relatively simple structure [6,9].  As a special case, if all 
the A ,  are given equal measure p ,  = 1/(2fl-'), the relation [lo, 121 

defining the generalised dimensions Dq [13] can be written as 
2" 1 AYr(q'  - 2"q. 

, = I  

Using (2) and (3), it immediately follows [8,9] that 

For the multifractal spectrum f (  a )  one obtains 

where S ( E )  is the Legendre transform of P F ( P ) :  

We will use these relations when calculating the universal f ( a )  function for the 
Feigenbaum attractor. 

In what follows an  essential role is played by the fact that the Feigenbaum attractor 
can be interpreted as the repeller of a certain unimodal expanding map fE(x) [4, 141. 
The attractor consists of the forward iterates x, = g'(x,) ( i  = 0, 1,2,3,  . . . ) of x, = g(0) 
where the map g obeys the Feigenbaum-Cvitanovic functional equation [ 111: 
aFg*(X/ayF) = g(x), g(0) = 1 with aF being a universal scaling factor [ 111. It was shown 
in [4] that the points x, can be organised on a binary tree defined by the rule 

X2, tF  = F,(x,) E =o,  1 (9) 

where F,(x) = ((YFg)-'(x) and F, (x )  = a;'(x). The functions F, and F ,  (called 'pres- 
entation functions' in [4]) can then be regarded as two branches of the inverse of the 
following unimodal expanding map f E  [4, 141: 

It maps both regions [x , ,  xj] and [x2 ,  x,] onto the interval [ x l ,  x,] also containing the 
'hole' between x3 and x2. After a large number of iterations, the points that have not 
yet escaped the interval [ x I ,  xo] sit on a close vicinity of a Cantor set, the repeller of 
the map f E .  

It is easy to see that the points xo, x l ,  x 2 , .  . . , x2"-,  are the nth pre-images of x, 
under the map f E .  Just as in the general case described in connection with the G F P  

equation, one can construct the length scales A, from the pairs of the pre-images of 
the seed point x* = xo: A ,  = /x, - X , + ~ , N - ~ (  ( i  = 0, 1,2,. . . , 2 " - '  - 1). (The formal difference 
between this notation and that used earlier comes from the fact that the points of the 
Feigenbaum attractor are indexed according to the forward iteration of g rather than 
their actual position on the x axis.) These intervals represent a complete covering of 
the repeller of f E ,  which can be refined by increasing n. 
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The above considerations show that the Feigenbaum attractor can also be obtained 
as the repeller of the map  fE. This fact enables us to use the G F P  equation applied to 
f E  in order to calculate its free energy. Since on the Feigenbaum attractor all the 
intervals A ,  are equally probable with respect to the natural measure of the map g, the 
multifractal spectrum follows from (6)-( 8).  

To calculate P F ( P ) ,  the most convenient method is the iterative solution of ( 1 ) .  
Since the largest eigenvalue A,(P) does not depend on the particular choice of the 
smooth initial function Q o ( x ) ,  one can use Qo= 1 .  In  this case the result of the nth 
step of the iteration can be given explicitly [3]: 

Q,,(x’) = exp(nPF(P))Z, (P ,  x ’ )  ( 1 1 )  

where 

f i n  and f:” denote the inverse and the derivative of the n-fold iterate of the map, 
respectively. Using the convergence of the iteration, the following scaling relation can 
be obtained for asymptotically large n :  

G ( P ,  x ’ )  - exp(-nPF(P)) .  ( 1 3 )  
At intermediate values of n, by taking the logarithm of the ratio Zn-,/Z,!,  one finds 

The correction d, appears as the effect of the second-largest eigenvalue of the G F P  

operator. For hyperbolic repellers, it falls exponentially with increasing n :  d, - ( d ( P ) ) “ ,  
where the quantity d ( P ) ,  less than 1 in modulus, is the ratio of the second-largest 
eigenvalue to A&?). This type of behaviour provides fast convergence and  a possibility 
of avoiding strong finite-size effects in the calculation. 

As an input to our calculations, we used the series expansion of the function g ( x )  
up  to the 14th power of x :  

7 

as given in [ 111. The value of x’ in (1 1 )  was fixed to be 0.1 (the free energy should 
not depend on x ’ )  and its pre-images were determined up to the 12th generation. 
PI=(@) was deduced from the n-dependence of the quantity 2, by using ( 1 3 )  and (14). 
The exponential decay of d, was also verified in this case. This fact enabled us to 
calculate the free energy with very high accuracy by estimating the corrections due  to 
the finite value of n as the sum of an  infinite geometric series of quotient d ( P ) .  (The 
modulus of d ( P )  was found for all /3 values to be less than 0.5.) The free-energy curve 
computed in this way is shown in figure 1. The convergence was very fast: six-digit 
precision was reached even after the n = 6 iteration, while for the n = 12 step we 
obtained an  accuracy of less than lo-“’. 

The generalised dimensions D, and the multifractal spectrum f ( a )  with respect to 
the natural measure on the Feigenbaum attractor was determined by using (6)-(8).  
The high accuracy of these quantities follows from that of the function p F ( p ) .  Our  
results for D, and f ( a )  were found to be in complete agreement with former results 
published in the literature [ lo ,  151. As a particular example, we obtained & = O S 3 8  
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Figure 1. The free energy p F ( p )  of the Feigenbaum attractor in the range - I O <  p < I O ,  
obtained by the iterative method after the n = 12 iteration. 

045 143 5(3) for the Hausdorff dimension via the relation F (  Do) = 0. This value is 
consistent with the results of [12,15,16] and  agrees u p  to an  accuracy of lo-’’ with 
the most precise of them [15]. Table 1 shows a few values from the D, spectrum 
obtained by the above method with a ten-digit accuracy. T h e f ( a )  curve is indistinguish- 
able from the results published earlier [lo, 151, so it is not exhibited here. 

It is worth noting that our  method can be used to calculate, besides the multifractal 
spectrum, other quantities which are also universal characteristics of quadratic maps 
at  the onset of chaos. The quantity d ( p )  describing the speed of convergence is the 
ratio of two eigenvalues of the G F P  operator of the universal map f E ,  so its universality 
is obvious. Recently, another important universal function A, was introduced in [ 171 
to describe finite-size effects in the calculation of the generalised dimensions based on 
the thermodynamic formalism. A detailed comparison shows that this quantity is 
connected with the limit function Q‘”(x) of the iteration procedure taken at p = 

In this comment we showed that the universal f ( a )  spectrum can be determined 
with high precision from an  eigenvalue problem. Our results show clearly that the 

( 1  - 4)D,. 

Table 1. Generalised dimensions D,, of the Feigenbaum attractor with respect to its natural 
measure for integer q values between -5 and 5, obtained by determining p F ( p )  via the 
iterative method after the n = 12 iteration and by using (6). 

-5 
-4  
-3 
-2 
- 1  

0 
1 
2 
3 
4 
5 

0.637 605 1836 
0.621 265 9425 
0.602 478 17 18 
0.581 736 0003 
0.559912 9101 
0.538 045 1435 
0.517 097 5725 
0.497 836 4592 
0.480 776 8494 
0.466 151 5569 
0.453 922 7023 
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method based on the GFP equation and recent advances on the thermodynamic formal- 
ism provides the maximum accuracy allowed by the incomplete knowledge of the 
Taylor series of g(x). The precision is limited mainly by the finite accuracy (ten digits) 
of the Taylor coefficients. Another (and less important) source of uncertainty is the 
cut-off at the 14th power in the expansion. 

Compared with other high-precision calculations using the same series [ 151, the 
main advantage of our method lies in its conceptual simplicity and the ease of 
implementation: programmed in FORTRAN, it takes less than 100 lines. The applica- 
bility of the procedure we presented is not restricted to the Feigenbaum attractor: it 
can be applied to other universal problems as well where presentation functions are 
known and the natural measure has a simple structure [4]. 
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